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THE PRESERVATION OF THE STABILITY OF A MECHANICAL SYSTEM WHEN 
A NON-RETAINING CONSTRAINT IS WEAKENED* 

A.P. IVANOV 

A system with ideal non-retaining constraint h *b cl is studied in the 
neighbourhood of an equilibrium position in which the reaction of the 
constraint is non-zero. It is assumed that the equilibrium is stable 
when SlZO. A family of periodic motions with impacts on the 
constraint is shown to exist, the period of whose motions tends to zero 
along with their amplitude. The orbital stability of the periodic 
motions is studied to a first approximation. It is shown that certain 
results of KAM theory can be used for non-linear analysis. In 
particular, conditions are obtained for the equilibrium position of a 

multidimensional system to be stable for a majority of initial 
conditions. 

I, Purpose of the investigation. We consider a canonical system M with the Hamiltonian 

H ET + II, ZT=aij(q)pi~J, nzIl(q), qE-R'" (1.1) 

and the ideal non-retaining constraint q1 :-> 0; impacts on the constraint are absolutely 
elastic. Here and throughout, we understand summation over repeated subscripts: i,j=*,, , ‘, 
n; &, m = 2, . ‘ .) n. 

If, when q = 0 we have 
ixudq, > 0, aniaq, = 0, . . ., xuaq, = 0 (I.21 

then the origin of the phase space is the equilibrium position of M /I/. 
The stability of the equilibrium position can be determined by considering the system 

M' with n - 1 degrees of freedom and Hamiltonian H' = H &,,_O. We have /21 

Theorem 1. We write the function n' = IT &, as 

n'= Fi,'+ n;,, f . .- (1.3) 

where n,' is a homogeneous polynomial of q2,. , .,Q,~ of degree S. If n; is positive 
definite (it can take negative values), the zero equilibrium position of system (1.1) is 
Lyapunov stable (unstable). 

The connection between the stability of systems M an4 M’ is more complicated when terms 
a@ipi are present in X (the equilibrium conditions then include, in addition to Eqs.(l.21, 
the requirements af = 0 for q = 0). 

The stability of system #' is necessary but not sufficient for M to be stable, see /2/, 
as shown by the following example. 

Exam@e. Consider the system with Hamiltonian 

where r,'p are canonical polar variables /3/, which describe the motion in the neighbourhood 
of equilibrium. The system M' is described by the Hamiltonian H'= r,-2~ and is integrable: 
r* = coast, rs.= const. In view of this, the equilibrium position r;l= rs = 0 of system M' is 
stable, in spite of the fact that the Hamiltonian of the disturbed motion changes sign (gyro- 
stabilization). If, by virtue of the initial disturbances, the values of pl,pl are non-zero, 
then, since system M has the first integral p:/z + 1% I = con3t, we obtain the well-known case 
of instability with third-order resonance /3/. 

The sufficient condition for stability are given by the following theorem /2/. 

Theorem 2. If the function lYI; in expansion (1.3) is positive definite, the stability 
of system M (with the presence of terms, linear in P) is Lyapunov stable, 

Note. If the system M' has one degree of freedom, its stability may not be ensured by 
gyrostabilization, and is only possible with zero degree of instability. Here, therefore, 
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Theorem 1 holds even when terms linear in p are present in (1.1). 
In the present paper we study the behaviour of system M in the neighbourhood of the 

origin of phase space when the system H' is stable. Apart from examining the equilibrium in 
cases which cannot be decided by Theorems 1 and 2, we study the motion with periodic impacts 
and their orbital stability. 

2. ?.'&a ~~~~~0~~ of the disturbed motion. Let us find the auxiliary system 114h with 
n degrees of freedom and without a non-retaining constraint. For this, we assume that the 
generalized coordinates in M are such that, in il.11, a,, ze 0 @ = "* I . ., n). The existence 
of these coordinates is proved in /4/, and the correspanding replacement of the variables in 
the canonical form is quite simple, If the generating function of the transformation q. PI-" 

cf, I' is such that 

z = q1p, i jF% (4) 1% (2.1) 

then px = P, + I-'mafmlaql, pe = Pm~f,it?q~ , and the condition that there are no products l'lf'j 

in the transformed Hamiltonian can be written as af,laq, = -a,,la,,. On adding to these dif- 
ferential equations the initial conditions fii = qk for q1 = 0, we obtain the replacement 
(2.1), which, by Lindeloff's theorem /5/, is non-degenerate for 4130. 

When there are terms linear in p in Hamiltonian (l-l), we can assume without loss of 
generaS.ity that, in addition to the equations fzlk 3 0‘ we have the condition n, SO /2/. 

The Hamilton function H* is given by 

If+ (4, p)== If(Iill/, (Iz,. . ., qll, p), S&%7, lg,-+ = min CA Mi@, lpi-d (2.2) 

The trajectories q*(t), PC (t) of system iW* are continuous and are connected with the 
trajectories of M by , 

where u, and Yl are linear forms, and u, is a quadratic form, and H, is a sum of terms of 
degree S in Is1 I, q': P. 

Since we are assuming that the equilibrium of system M' is stable, there is a linear 
canonical transformation q', p'-+ Q’. P’ such that the part of the ~amiltonian (2.4) which 
is quadractic in Q’,P’ has the normal form /3/ 

'/&,nkP,,+ cbmqkp,., i U, f$) z- '& (QirS -+ Pk2) h, E H (2.5) 

3. Periodic motions in the ne~g~~h~~ of ~~u~~~~~~~. For local non-linear analysis, 
an important role is played by the Lyapunov holomorphic integral theorem /6/, which says that., 
if the Hamilton function is analytic, then for every pair of pure imaginary roots &ih 
of the characteristic equation, and when there are no other roots i&N, N E Z, a family of 
periodic solutions exists, whose period tends to 2nih as the amplitude tends to zero. 

The smoothness requirement for the function (2.4)‘ (2.5) can be weakened, as is shown by 
the following theorem. 

Thsorem 3. 1x1 the neighbourhood of q == P = 0 let the Hamiltonian be 

where gI = HI (q* p) is a thrice continuously differentiable function which vanishes along 
with its first- and second-order partial derivatives for q_p120. If none Of the hj is 

zero, system f3.11, for O<E<%r has a family of s-periodic solutions, for which 

4% = 0 (ES), PI = 0 (E), qj, pj = 0 (E"), s's: 2 
(3.2) 

Note. The family (3.2) corresponds to motions of system M with impacts on the constraint. 
As distinct from the classical statement, the period of the motions tends to zero with their 
amplitude. 

Prcx?f of Theorem 3. tie will change from variables 41T Pl to the canonical variables 

1, w by means of the replacement, Zn-periodic in W, of the form for lwi<n 
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and simultaneously introduce the canonical variables xk? !fk by qk + ipk = l/zxk, iqk + pk = 

@I/k* 

In the new variables, (3.1) is 

H = yl’l: + i&sky, t- I’l’L, -I- I”*F (I, w, x, y) -t G (x, Y), Y = 'ldnabla (3.3) 

where L, is a linear function of x,y with coefficients, Zn-periodic in W, and the function 
F is continuous and an-periodic in W, is continuous in I and continuously differentiable 

for IfO, is twice continuously differentiable with respect to X, y, and for x=y=o 

we have F = aFlax = aFlay = 0, while the function G is thrice continuously differentiable 
and its first- and second-order partial derivatives vanish for x=y=o. 

If it turns out that L, ~0, the periodic solutions in question can be written at once 

x = y = 0, I = I, = const, w- = ai,&‘* = 24~1.~ (3.4) 

To obtain the solutions in the general case, some transformations are needed. If I - 83, 
x, y - &=I* then H has the order E*. We fix H = Ho+=0 
Eq.(3.3)'as an implicitly specified function 

and put 1 = (pi-#!* i- r. Regarding 
r (W, XV Y)r we perform iso-energetic reduction 

/6/. The reduced system is 

axjaw = aTjay, dyJdw = - arjax, r = ia,eh,x,y, + (3.5) 

8’ tfr +‘) =k + gk @“) l/,1 + =‘F,fw, 8, & Y). '& = R 

where F, is twice continuously differentiable with respect to x,y, and F, = aF,ldx = 8F,l 
ay = 0, x===y=o. 

In system (3.5) we perform the canonical transformation x, yfx*,y* with generating 
function S = .%&* + ak (w)zk + bk (w) yk*. The connection between the old and new variables 
is given by Y =Y* + a, x* = x + b, and the new Hamiltonian is 

r* = r + dS,@w= r(x* - b,y* + a)+ u~'(Q* - b,)+ bk’yk* (3.6) 

We choose the coefficients a,(w), bk(w) in such a way that the first-order terms in 
x*, Y* in (3.6) vanish. Noting that the linear part of the function r(x* -b, y* + a) is 
given by r, = xk*ar (-b, a)/a.r,* + Yk*ar (-b, a)/ayk*? we obtain the following system of equations 
for a,b 

aj' + iu,shjaj + e*fj + e8aFe((w, - b,a)/axj=O 

bj’ - facr,ehjbj -t E3gj + ~~a~~(~, - b, a)/ayj = 0 
(3.7) 

We perform the task of normalization by finding the Zn-periodic solution of system (3.7). 
In this case, system (3.6) has the form r* = iaa,hkxk*y,* + e3F,* (w, e, x*, y*), where the partial 
derivatives of F,* with respect to x*,y* vanish for x* = y* = 0. The required periodic 
solutions are x* = yf = 0, P* = eSFn* (w, e, 0, 0). _ 

We obtain the periodic solutions of system (3.7) by successive approximations. As a 
first approximation we take au) = b@) = 0. One approximation is connected with the next by 
the relations 

__ 

u:@+l) + iecL,hjaj'+l' + efj = - eaaF6”)laxj I 
‘(d+l) bj - iea&$, (a+l) f egj = - ev@)jay j 

Ft’ = F, (w, - b(a), a(z)) 

System (3.8) splits up into (2n - 2) linear equations of 
-eSf(w), where by hypothesis h # 0. For sufficiently small 
integer), this equation has the periodic solution 

(3.8) 

the same type 2' + iaL3 = 
e (so that ah is not an 

(3.9) 
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The successive approximations are given as Zn-periodic functions of w by (3.8) and 13.0). 
If we define the norm of a vector function as 

then we obtain, for sufficiently small F, from the continuous differentiabilitv of dF,,"ds, 
ilF,ldy and (3.9), the inequality 

@*I) 
II+ - a!"'*' 2 

h'SC'1 1 t - h”” /I -< p /j a; ’ - ai”, b:"' - bi?'! 11, 1~ < 1 

where ‘$' b/"', ai;!, b;-' are arbitrary periodic functions of W, and al"+", hy1) 

are the corresponding solutions of system (3.8). 
In view of (3.10), the iterative process converges to the solution of system 

This completes the construction of the periodic solutions. Estimate (3.2) follows 

CoroZZary /7, 0/. Function (3.1) can be reduced by canonical transformation 
form H = f (1) + F (~7. 1, q, p) 

(3.7). 
from (3.9). 

to the 

(3.11 ) 

where aF;Gq -= aF/i$ = 0 for q_P:=o, and I'-, x as I->@. 

Note. If If, in (3.1) is analytic, then the solution of system (3.7) depends analytically 
on e /9/. The periodic solutions (3.2) can, in this case, be written as convergent series 
in the parameter e, as in the classical statement of the theorem. 

Example. The motion of a particle along a vertical above a horizontal support is given 
by the Hamiltonian II = lSzpS + g/q/. where g is the acceleration due to gravity. The general 
solution can be expressed by E -periodic functions, which have the form, when /I/ ':: P::! 

Y I!*@ (';'$ - 1 t 11, p =-= g i’j& - \ t /l 

Here, max 1 q ( ~= p (‘/,I$ = va2ge*, max 1 p 1 -1 p (0) = v,ge. 

4. Orbitczt stability of periodic motions. When studying the orbital stability of the 
periodic motions obtained above, a primary role is played by the quadratic part of functions 
(3.6) 

r* = '/$X,&h, (qrZ i- Ph2) i e"JJ (IL', &, q> P) (4.1) 

where B is a quadratic form in q,P with coefficients, 2n-periodic in W. The first term in 
(4.1) is the principal part as e-+ 0. 

To see how the multiplicators of system (4.1) depend on the parameter E (this dependence 
characterizes the amplitude of the periodic solutions) we use the Krein-Gel'fand-Lidskii 
theorem on strong stability IlOf. By this theorem, if the numbers ai do not satisfy a 
resonance relation 

or+crs==iV, NE2 (rrS=l,...,n) (4.2) 

then there is a number 6 = 6 (u)> 0 such that, when we have 

max IH,@,% P)I<* (4.3) 
t~[o‘ml. (Q=X. ipi=1 

the system with Hamiltonian 

H = '/aor (qra f PRY + H, (b qv PI, 4, P E R” (4.4) 

is stable. In other words, when there are no resonances, the multiplicators when the Hamilton 
function is slightly disturbed will not leave the unit circle in the complex plane. 

As applied to system (4.1), if none of the hi, is zero or negative, then the condition 
for there to be no resonances of type (4.2) can be satisfied for F E ]O,FJ, where P,, is 
given by 

(4.5) 

Along with (4.1), we take the system dependent on the parameter ).I 

H, = a~~~~(~~2 f FEW + N,(w a, q, PI (4.6) 

If p E 10, &?I, there is a number 6 = s(p)'> 0 such that, when (4.3) holds, system 
(4.6) is stable, i.e., all its solutions q,,(w), p&(10) are bounded functions when WE R. 
Put 6, = min 6(n) for I" E [E,,/2, .%)I. 

The functions q, (VW), p,, (VW) are solutions of the system 



421 

which transforms into (4.1) 

Pv = E* vH,(w,e,q, p)= sSB(~/v,s, %P) 

If v-1E.Z then the H, in (4.7) is Zn-periodic in W. Since, for any 

there exists NEZ such that P = NE G b0/2, E& then, putting v=N-1 

obtain the stability condition for System (4.1) 

EBEO max 
ut~ro.znl. t4l=lPl=l 

IB(GS%%P)I<&(V 

(4.7) 

E E lO,*Eolr 
in (4.71, we 

(4.8) 

We have thus proved the following theorem. 

theorem 4. If no characteristic exponent of system M, is zero or negative, then, given 
sufficiently small E>O, the motions of system M with e-periodic impacts on the non- 

retaining constraint 91 > 0 are orbitally stable to a first approximation. 
We will study the mechanism by which instability of the periodic solutions arises in the 

case when all the numbers ht are positive, which guarantees, in view of Theorem 2, stability 
of the position of equilibrium. 

The derivative of function (4.1) with respect to the parameter s is 

dH/de = '/zalh,(qka + pk2)+ 3e2B i- o(e") (9 
If 

33% max 
wCz[o,2nl. Iqf=lPl=l 

fBI<aryinhj 

the function (4.9) is positive definite. The multiplicators of the first kind of system 
(4.1) which, with E =o, issue from the point p=l of the unit circle, then move along 
this circle counter clockwise /lo/. If, with e=&*, one multiplicator (and hence, at least 
two) becomes equal to -1, while the characteristic matrix then has non-simple elementary 
divisors, then, by the Krein-Lyubarskii theorem IlOl, there exists e1>e* such that, with 
EE I&*, E,], the periOdiC motion is unstable. 

There is another case when instability can arise: if the function (4.9) ceases to be 
positive definite as E increases, then the multiplicator P(E) can start to move clockwise 
along the unit circle to the value p = 1, which it reaches with e = E*. Here again, the 
loss of stability is determined by the Krein-Lyubarskii theorem. We thus have the following 
theorem. 

Theorem 5. If the characteristic exponents of system M' are positive, then the loss of 
stability of the s-periodic motions with impacts on the non-retaining constraint for E > E* 

is accompanied by the appearance for e = e* of a periodic (p = 1) or antiperiodic (p = -1) 
solution of the equations in variations. 

&Xm@e. A particle which moves in a vertical plane above a smooth curve Y = f @) is 
in stable equilibrium at the critical point z" if f"(i") >o; then 3, = If" (z")]"*. The motions 
with periodic impacts are described by the relations 

a! = z", Y = "1.g 1 t 1 rile - i t 1) for 1 t I % ‘In% Y 0 + 8) = Y (0 

while the height h to which the particle jumps is gas/K. If the curve is replaced to a first 
approximation by a parabola # = 'l,f"(z*)(z- z")', we can choose h in such a way that the system 
has antiperiodic motion: for this, the particle must strike the parabola at a right angle. 
The velocity vector @J> -V&e) must be orthogonal to the tangent vector to the parabola. 
(1, ‘ltf ’ W) 4 I whence we have 

1 = 1/J'&=) ge= = 21" (2") h 

which is the same as the stability domain boundary O<f"(z")h<%, see /ll/. 
If the hl, have different.signs, the loss of stability is not necessarily linked with 

the birth of periodic or antiperiodic solutions; 
in (4.21, 

resonance of composite type, when r+s 
can also lead to instability. 

5. Stability in the case n =f.Z. In the case n=2 
of periodic motions in the strict non-linear statement. 

we study the orbital stability 

We showed in Sect.4 that, if the equilibrium position of system M, is stable, then, 
for sufficiently small values of 8, the Hamiltonian of the disturbed motion is 

r* = '1,1 (9*" + Paa) + r1 (E, w* flzr Pa) (5.1) 

where the function r, is continuous and 2n-periodic in w and depends smoothly on the energy 
constant E and on qo,pp. 

The orbital stability of periodic motions can thus be determined on the basis of the 
Arnol'd-Moser theorem /a, 121. If none of h, 2h,..,, 21b is an integer, we can reduce 
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system (5.1) by non-linear real canonical transformation to the normal form 

In (5.21, 
f . 

rat1 1s a smooth function in qe, pe whose order of smallness is at least 

21 -t- 1, and which is continuous and 2n-periodic in w. If at least one coefficient cj (i z 

2 I) is non-zero, 
(;+'l*)"is stable. 

then, by the Arnol'd-Moser theorem, the trivial solution of system 
Some resonance cases, when 8-h is an integer for sEZ+, are considered 

in /3, 7/. 

6. StabiZity in the muW&mensionaZ case. The present level of development of stability 
theory prevents us from treating the case n>3 as fully as the case n = 2. Strict 
results on Lyapunov stability or instability of the equilibrium position of a system, 
established as a result of the reaction of the non-retaining constraint, are exhausted by 
the cases covered by Theorems 1 and 2. For applications, however, it may be useful to 
consider stability for the majority of initial conditions. 

According to the Kolmogorov-Arnol'd-Moser theory, stability for the majority of initial 
conditions is inherent in the equilibrium positions of Hamiltonian systems when the Hamiltonian 
Of the disturbed motion is reasonably smooth and when certain conditions for non-degeneracy 
of the normal form hold /a, I3/. A feature of the present case is that H is not differen- 
tiable with respect to q1 for ql = 0. We shall show that this does not affect the main 
conclusion of KAM theory on the existence of invariant tori which ensure stability for most 
initial conditions. 

Using the results of Sect.4, we write the Hamiltonian function in the neighbourhood of 
the equilibrium position as 

H = cd;‘* + ‘/& (qk2 t pra) + 2, (9, Pt f,, co) (8.1) 

where 8x,idq = i3Hlf8p = 0 for q =p=O, avr,iaq” = a2ffliapt = aW&hp =’ 0 for q =.I P = 
1, = 0; the function H, is smooth (is differentiable a sufficient number of times for 
application of the methods of KAM theory) with respect to q,p, 1,. and is continuous and 
2n-periodic in w. 

We assume that resonance relations of up to and including the fourth order do not exist 
between the characteristic exponents, i.e., that we have no equation of the type 

Putting I, = I, f rl, 1, = (E/C+, we perform iso-energetic 
H-E and w as the new independent variable. The results is 
of freedom: 

(6.2) 

reduction in (6.1), taking 
a system with n-l degrees 

rl = ‘/@hk* (Qh’ -f- pkz) + 0 (E'), & - I;‘, h,* = hkr (E), ax* (0) = h, (6.3) 

where terms of at least the third order in q,p are not written. 
Since resonance of type (6.2) do not exist for the h,, they also do not exist for the 

;h,* for sufficiently small c. It then follows that, fur small E, there are no resonances 
of the more general type 

((i.4) 

which are important when the Hamiltonian depends explicitly on the independent variable. 
As a result of normalization, system (6.3) up to fourth order terms, becomes 

rl = eh,*r, f l/e~kmrkrm -!- 0 (es), 2rk i= qka f ha (fw 

where the coefficients C%M vanish along with E, and the unwritten terms have order at least 
&I, in rw, and represent the disturbed part of the system, which latter is integrable when 
this part is absent. The difference between system (6.5) and the cases usually treated in 
KAM theory is that the disturbances are not smooth with respect to the independent variable 
U. But we showed in Sect.5 that, in the case n=2, this fact does not play an important 
role (see also /14/, the note on 192, 194). Even in the case n&3 non-differentiability 
with respect to IJ is not important, as is shown by the following theorem /15/. 

Theorem 6. If the non-degeneracy condition det/Ickmjl+O holds (as applied to system 

(6.1), this is the condition for iso-energetic non-degeneracy), and a, rk are sufficiently 
small, most of the non-resonant tori of the system with Hamilton function 

BO=ek,* rk + 1/2CkmrkPm 
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do not vanish, and only a few are deformed, so that, in the phase space of system (6.5), 

there are also invariant tori, filled everywhere densely by phase curves which wrap round 
them conditionally periodically with n - 1 frequencies. These invariants tori form a 
majority in the sense that the Lebesgue measure of the complementary union is small along 
with the disturbances. These latter are assumed to belong to class c,, s>2n /15/. 

proof. If the dependence on w in system (6.3) is smooth (class C,), we could use 

Arnol'd's ~'131 or Moser's /8/ proof as applied to the initial system (6.1). It is still 
possible to use these proofs in the present case, by extending them to systems with an 
unsmooth dependence of the Hamiltonian on time (here, on the independent variable wf. 

Let S = S(Iu,r',q) be the generating function of the normalizing transformation r,cp--+ 

r', cp', so that r = r' + aS/dtp, cp' = cp + aSldrf. 

The new Hamiltonian is rl' = rl (r’ -I- asiacp, cp' - mat, w)+ aslaw. Noting that rl and S 
are periodic with respect to the angular variables, they can be expanded in infinite sums 

r1 =: 2 h, (r, w) eiW v), S = 2 S, (r, W) ei(“v@ 

u =i (u2, . . .I un), (u, cp) = w+J, + . . . + WPn 

To nullify in the normal form the terms that depend on cp, the coefficients Sk must 
satisfy the equations 131 

as,jatu+ i+7,+ h,=o, x,= (0, U) (6.6) 

where the ok = aH,&?rk are evaluated on the invariant torus rk = Con&. Eq.(6.6) has a 
unique 2n-periodic solution, given by relations similar to (3.9). In the relations, the 
denominator vanishes if xL is an integer, i.e., in the case of resonances of type (6.4). 

Estimation of 1 Sk 1 is based on an arithmetic lemma which generalizes the well-known 
assertion of /8/ concerning resonances of type (6.2). 

l&ma. For almost 

Proof. Since 

the estimated quantity 
It is well-known that, 

all 0E 07" we have 

If -e-*ni(olu)l),C(0)IuI-v, v>nfl (6.7) 

j1---*xi(o,"f[=21sinn(o,u)l 

is close to zero when the scalar product @,u) is close to an integer. 
for almost all (~+i)-dimensional vectors 08 = {ot,i), 

I w. a*) I = I @v @ + un+x I >, Cl (4 (1 u I + 1 %*+I I)-” W% 

that 
If lu,+~l>2lulf~l, then I u I I@ I c I 0% 0) + un+t I , while otherwise it follows from (5.8) 

I (u* 0) + u,+x I>,c,(o)IuI-v~ C,=G(i+ZJo,~)-~ 
Putting CS (0) = min (2 (o 1, C,(w)), we obtain 
Since 1 sin nzj > minV,n ( I- N ] (NE 2) for al:( 

u, e) + %+1 I B c, (0) I u I-+* 
x=R, we finally have 

, , _ e-2ni(o* U) ]=2]sinn(o, u)]=2lsin[x(w, u)fnu,+,]I>,nminI(o,u)$.u,+,l>, 
nCste)lU 1--v 

which proves the lemma. 
By (6.7), we have 

which has the same form regardless of whether the Hamilton function is smooth with respect 
to the independent variable W. Satisfaction of (6.9) ensures that the iterative process is 
convergent when constructing the invariant tori of the disturbed system, so that the rest of 
the proof of Theorem 6 is the same as in the smooth case /0, 13/. 

1. 

2. 
3. 

4. 

5. 
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ASYMPTOTIC MOTIONS OF MECHANICAL SYSTEMS WITH NON-HOLONOMIC CONSTRAINTS" 

G.M. VINNER 

The motions of mechanical systems with non-holonomic constraints close 
to critical points of the potential are c-onsidered. The stability of 
the equilibrium positions was first treated by Whittaker /l/. A 
theorem is given which includes earlier results /2/ as a special case, 
and which enables asymptotic motions to be found for new classes of 
potentials. Sufficient conditions are found for the equilibrium to be 
unstable when not all the frequencies of small oscillations vanish. 
Similar studies were made in 13-W for systems without constraints. 

The hypothesis can be advanced that a critical point of the 
potential energy is an unstable equilibrium of a mechanical system with 
non-holonomic constraints (linear in the velocity) when zero is not a 
minimum of the function V*. 

Here, the origin is the equilibrium position in question, and the 
asterisk denotes contraction of the potential energy V to the 
subspace, orthogonal to all the constraints at zero. 

This hypothesis is proved below for the case when the MacLaurin 
expansion of V* is V* = V,*+ Vk* + Vz+, + .., where v,* + vs* can take 
negative values infinitesimally close to zero (V)* is a homogeneous 
form of degree j). 

This situation when va* >, a and Vk* >a is not considered. Also, 
to determine the absence of a minimums higher powers must be taken into 
account. 

1. The rigorous statement of the probkm, and the resu%. We consider a mechanical 
system with configuration space L, which can beregarded as the standard R", since all our 
constructions are performed in an infinitesimally small neighbourhood of zero. Let the 
generalized coordinates be % = (%I, . . . . E”)T E L. The Lagrangian of the system can be written 

as K (5, E') - V (E), where K is the kinetic energy, quadratic in the velocity, and V is the 
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